Response of human spermatozoa to an internal calcium ATPase inhibitor, 2,5-di(tert-butyl) hydroquinone

Author(s):  
Raquel L. Perry ◽  
Christopher L. R. Barratt ◽  
Michael A. Warren ◽  
Ian D. Cooke
1993 ◽  
Vol 105 (4) ◽  
pp. 1131-1135 ◽  
Author(s):  
H. Flaadt ◽  
E. Jaworski ◽  
D. Malchow

Signal transduction in Dictyostelium for oriented movement and differentiation involves a fine tuning of the cytosolic Ca2+ concentration. We have previously shown that cAMP binding to the cell surface receptor elicits two cellular events: (i) to enhance Ca2+ entry across the plasma membrane; (ii) to increase Ca2+ uptake into Ca(2+)-sequestering organelles. Here we used permeabilised cells to show that cAMP-induced Ca2+ uptake in these cells was sensitive to the Ca2+ transport ATPase blocker 2,5-di-(tert-butyl)-1,4-hydroquinone (BHQ) and the vacuolar H(+)-ATPase inhibitor NBD-Cl. By contrast, bafilomycin A1 and vanadate, inhibitors of Ca2+ uptake into acidosomes in Dictyostelium, did not reduce the cAMP-induced Ca2+ uptake of permeabilised cells. GTP gamma S served as a tool to measure Ins(1,4,5)P3- (InsP3)-sensitive Ca2+ release. Following NBD-Cl or BHQ treatment Ca2+ release was reversibly inhibited. We conclude that the cAMP-controlled Ca2+ influx is directed into a NBD-Cl and BHQ-sensitive compartment, which comprises the InsP3-releasable pool. The acidosomal Ca2+ store seems to provide for additional Ca2+ if required.


1998 ◽  
Vol 139 (1-2) ◽  
pp. 229-238 ◽  
Author(s):  
Karen S McColl ◽  
Huiling He ◽  
Hongying Zhong ◽  
Cecilia M Whitacre ◽  
Nathan A Berger ◽  
...  

2021 ◽  
Vol 15 (2) ◽  
pp. 3-14
Author(s):  
O. V. Tsymbalyuk ◽  

Introduction. Plasma membrane calcium ATPase is a constitutive structure of cells that functions as a high affinity system of releasing Са2+ ions from the cytoplasm and ensures a long-term maintenance of the basal concentration of these cations in the state of dormancy. Currently, there are no satisfactory means for the pharmacological correction of plasma membrane calcium ATPase function. Thus, elaboration, synthesis, and study of substances with the targeted impact on plasma membrane calcium ATPase are topical issues. Previously, we determined the ability of this calix[4]arene in the concentration of 10 µM to inhibit the contractive activity and to slow down the relaxation of smooth muscle of the myometrium in the NO-dependent way, which considerably decreases the normalized maximal velocity of the relaxation phase. Materials and Methods. The tenzometric methods and mechanokinetic analysis were used to investigate the impact of the cumulative increase in the concentration of calix[4]arene С-90 (10 nM – 100 µM) on the spontaneous contractive activity of the myometrium of rats. The complete profile of spontaneous cycles of contractions-relaxa­tions was studied by the empirical multiparameter method of complex mechanokinetic analysis, elaborated by us (with the consideration of the parameters of time (τ0, τC and τR), force (Fmax, FC and FR), velocity (VC and VR), and impulse (Іmax, ІC and ІR). Results. Calix[4]arene C-90 evoked the dose-dependent inhibition of spontaneous contractive activity of the myometrium preparations. Its high concentrations caused a change in the structure of the contraction act, such as an increase in the duration of the contraction phase, while the duration of the relaxation phase did not show any changes. The multiparameter method of the complex mechanokinetic analysis demonstrated that in the whole range of the investigated concentrations, substance С-90 considerably decreases the indices of force parameters (Fmax, FC and FR) and the values of impulses of force Іmax, IC and IR of the spontaneous contractions of the myometrium. On the background of all the applied concentrations (10-7–10-4 М), calix[4]arene С-90 conditioned the slowing down of the relaxation of spontaneous contractions in uterine muscle prepa­rations of rats, which was reflected in a reliable decrease in the parameter for the maxi­mal velocity of the relaxation phase (VR). Conclusions. The results of the study demonstrate that calix[4]arene С-90 inhibits the processes of Са2+ extrusion from smooth muscle cells myoplasm, probably, impacting plasma membrane calcium ATPase molecules directly. It is noteworthy that C-90 is also likely to inhibit the processes of the intake of these cations to cells from the extracellular medium, causing a decrease in the velocity of force intensification during the contraction phase, and reducing the frequency and force of the spontaneous contractions in the myometrium.


Sign in / Sign up

Export Citation Format

Share Document